De Minimis Emissions Determination Methodology for the Arizona HAPRACT Rule

Presented to
Arizona HAP Stakeholders
24 August 2005

Presented by
Steven Mauch
Weston Solutions, Inc.

Objectives

- Describe statutory context of de minimis emissions thresholds
- Describe air dispersion modeling used to determine de minimis levels
- Explain calculation of de minimis levels and the table of values

Statutory Context

- De minimis refers to a level of emissions below which certain regulatory requirements do not apply
- A.R.S. § 49-426.06(B)
 - "For purposes of determining whether a change constitutes a modification, the director shall by rule establish appropriate de minimis amounts for hazardous air pollutants that are not federally listed hazardous air pollutants. In establishing de minimis amounts, the [ADEQ] director shall consider any relevant guidelines or criteria promulgated by the [USEPA] administrator."

Statutory Context

- Federal HAP de minimis not established under 112(g)
 - Proposed rule will cover only Federal HAPS
- Statutes require definition of de minimis levels for HAPRACT applicability to modifications
- De minimis levels will apply to modifications of existing sources
 - Source category must be listed as potentially subject to HAPRACT (SIC code)
 - Applicant can demonstrate HAPRACT not needed to protect health (Risk Management Analysis or RMA)

- USEPA SCREEN3 model
 - Most recent version (96043)
 - Screening version of refined ISC3 model
- Assumed facility with worst-case emission dispersion characteristics
 - Capped stack on single-story building
 - Emissions are at ambient temperature and have no vertical velocity
 - Stack height based on maximum building downwash effects

Source characteristics

- Emission rate = 1 gram/second
- Height = 5.64 meters (18.5 ft)
- Diameter = 1 meter (3.28 ft)
- Exit velocity = 0.001 meters/second
- Exit temperature = 293 deg K (68 deg F)

Building characteristics

- Height = 3.66 meters (12 ft)
- Length = Width = 40 meters (131 ft)

- Automated receptor distances used
 - From stack (0 meters) to 10 km (6.2 miles)
 - Model also automatically locates specific distance to overall peak impact
 - For instance, overall maximum may occur at 43 meters from source
 - Model starts search for peak at closest distance specified (at the stack in this case)

- Other SCREEN3 model options used
 - Regulatory mixing height & cavity options
 - Default anemometer height (10 m) (32 ft)
 - Flat simple terrain
 - Rural dispersion
 - Default ambient temperature (293 K) (68 F)
 - Full meteorology (54 wind speed/stability combinations)

- Calculated using modeled concentration and previously developed health-based Ambient Air Concentrations (AACs)
 - Short-term values used to define hourly emission levels
 - Long-term values used to define annual emission levels
- Goal is to calculate the emission rate that would produce ambient air concentration equal to the AACs

- Starting point is maximum 1-hour concentration estimated by SCREEN3
 - Outputs 1-hour concentration in micrograms per cubic meter (μg/m3)
 - Results are for each 1 gram per second (g/s) of emissions
 - Referred to as "concentration-to-emission-rate ratio"
 - Expressed in milligrams per cubic meter per gram per second of emissions, or (mg/m3) / (g/s)
 (1 mg/m³ = 1,000 μg/m³)

- Equation used:
 - $E_d = AAC / CER$, where
 - E_d = De minimis emission rate (g/s)
 - AAC = Reference ambient air concentration (mg/m³)
 - CER = Concentration-to-emission-rate ratio [(mg/m³)/(g/s)]
 - SCREEN3 outputs 1-hour concentration in micrograms per cubic meter (μg/m3); 1 mg/m³ = 1,000 μg/m³
 - For annual period, 1-hour CER is multiplied by 0.08

- Emission rates converted to English units
 - Short-term: (lb/hr) = (g/s) / 0.126
 - Long-term: (lb/yr) = 8,760 * (g/s) / 0.126
 - 8,760 hours per year
 - 1 g/s = 0.126 lb/hr

- Example: Styrene, Short-term
 - Acute $AAC = 554 \text{ mg/m}^3$
 - 1-hour CER = 140.3 (mg/m³)/(g/s)
 - $E_d = 554 / 140.3 = 3.95 (g/s) / 0.126 = 31 lb/hr$
- Example: Styrene, Annual
 - Chronic $AAC = 1.04 \text{ mg/m}^3$
 - Annual CER = $140.3*0.08 = 11.224 \text{ (mg/m}^3)/(g/s)$
 - $E_d = 1.04 / 11.224 = 0.09266 (g/s)$ 0.09266 (g/s) * 8,760 / 0.126 = 6,442 lb/yr

De Minimis Levels Table

- Table in report lists thresholds for 73 HAPs
 - Federal HAPs
 - Compounds identified as being emitted by existing sources in Arizona
 - From facilities with at least 1 TPY for a single HAP or 2.5 TPY for all HAPs (thresholds in statutes)
- Single de minimis value shown for certain compounds in table
 - Both annual and hourly values were calculated
 - If annual less than hourly, only annual is shown